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Abstract

Major efforts in human neuroimaging strive to understand individual differences and find

biomarkers for clinical applications by predicting behavioural phenotypes from brain imaging

data. An essential prerequisite for identifying generalizable and replicable brain-behaviour

prediction models is sufficient measurement reliability. However, the selection of prediction

targets is predominantly guided by scientific interest or data availability rather than reliability

considerations. Here we demonstrate the impact of low phenotypic reliability on

out-of-sample prediction performance. Using simulated and empirical data from the Human

Connectome Projects, we found that reliability levels common across many phenotypes can

markedly limit the ability to link brain and behaviour. Next, using 5000 subjects from the UK

Biobank, we show that only highly reliable data can fully benefit from increasing sample sizes

from hundreds to thousands of participants. Overall, our findings highlight the importance of

measurement reliability for identifying brain–behaviour associations from individual

differences.
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Introduction

Major ongoing efforts in human neuroimaging research aim to understand individual

differences and identify biomarkers for clinical applications. One particularly promising

approach in this regard is the prediction of clinically relevant phenotypes in individuals (e.g.

symptoms, treatment response, intellectual abilities) from functional and structural brain

measurements (Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015; Woo, Chang, Lindquist, &

Wager, 2017; Varoquaux & Poldrack, 2019). Patterns of (resting-state) functional

connectivity, the statistical relationship between regional time courses of brain activity (most

often expressed as Pearson’s correlation), have been among prominent brain features used

for prediction of such phenotypes (Castellanos, Di Martino, Craddock, Mehta, & Milham,

2013; Finn et al., 2015). A large amount of research has focused on the development and

improvement of predictive modelling approaches (Shen et al., 2017; Pervaiz, Vidaurre,

Woolrich, & Smith, 2020; Kong et al., 2021). Thus far, however, accuracies have remained

too low to provide major insights into neural substrates of individual differences or reach

clinical relevance (Eickhoff & Langner, 2019; Sui, Jiang, Bustillo, & Calhoun, 2020; Finn,

2021; Tian & Zalesky, 2021; He et al., 2022).

An essential prerequisite for identifying replicable brain-behaviour associations is sufficient

reliability of measurements (Vul, Harris, Winkielman, & Pashler, 2009; Milham, Vogelstein, &

Xu, 2021). In psychometrics, reliability broadly reflects the consistency of scores across

replications of a testing procedure (Standards for Educational and Psychological Testing,

2014). In the context of individual differences, test-retest reliability has received the most

attention. It is understood as the degree to which a measure ranks individuals consistently

across multiple occasions (i.e. low performers remain low performers on repeated testing).

Note that this assumes the measure in question assesses a stable characteristic of the

individual or the amount of change between occasions does not differ between individuals

(e.g., due to practice from repeated testing). Test-retest reliability is typically evaluated by

intraclass correlation (ICC) which is the ratio of between-subject variance and total variance,

composed of between-subject, within-subject and error variances (see McGraw and Wong

(1996) for a detailed discussion). Measurement noise, understood as the random variability

that produces a discrepancy between observed and true values (or repeated observations) is

therefore tightly related to reliability as it contributes to error variance in the calculation of

ICC. That is, a high level of noise results in low reliability if between-subject variance is held

constant. ICC can range from 1 to 0 and is often interpreted as excellent for ICC > 0.8, good

for 0.6 - 0.8, moderate for 0.4 - 0.6 and poor for < 0.4 (Landis & Koch, 1977; Hedge, Powell,

& Sumner, 2018).
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While a large amount of focus has been put on assessing the reliability of brain-based

measures (Elliott et al., 2020; Hedges et al., 2022; Noble, Scheinost, & Constable, 2019) and

ways to improve them (Finn et al., 2017; Vanderwal et al., 2017; Amico & Goñi, 2018; Li et

al., 2019; Pervaiz et al., 2020; Noble, Scheinost, & Constable, 2021), the reliability of

behavioural assessments used as prediction targets has been largely neglected. Selecting

scientifically or clinically relevant targets for prediction is often guided by pragmatism and

logistic constraints (e.g., dataset availability), rather than reliability considerations or criterion

validity. Furthermore, classical experimental paradigms may not be well suited for the

investigation of individual differences as between-subject variance in such paradigms is often

low by design, resulting in low reliability (Hedge et al., 2018). Finally, current assessments of

the test-retest reliability of behavioural measures commonly used in the literature show that

most fall below the ‘excellent’ reliability (Enkavi et al., 2019; Hedge et al., 2018) that is

required for clinical applications (Landis & Koch, 1977; Cicchetti & Sparrow, 1981; Barch &

Carter, 2008; Streiner, Norman, & Cairney, 2015). A recent meta-analysis by Enkavi and

colleagues (2019) showed the average reliability of 36 tasks assessing self-regulation was on

the border between good and moderate (ICC = 0.61), and newly collected data for the same

tasks showed even poor reliability (ICC = 0.31). Similarly, assessments of reliability in large

datasets and longitudinal samples have reported lower estimates than those reported in test

manuals, which often report reliability assessed over relatively short retest intervals (Han &

Adolphs, 2020; Taylor et al., 2020; Anokhin et al., 2022).

High measurement reliability is essential as it attenuates relationships between variables. In

classical statistics, this is manifested by setting an upper bound on effect size (Spearman,

1910). In the context of machine learning, low reliability can have a profound impact on

model performance by lowering the signal-to-noise ratio. Label or target noise (akin to

measurement noise) reduces the accuracy of classification algorithms (Frenay & Verleysen,

2014) and increases uncertainty in parameter estimates, training time (Zhu & Wu, 2004) as

well as the complexity of a given problem (Garcia, de Carvalho, & Lorena, 2015). Due to

inadequate reliability, models may fit variance of no interest (e.g., measurement noise) during

training. This results in poor generalisation performance or a failure to learn altogether.

Therefore, low out-of-sample prediction accuracy may be a consequence of unreliable

targets rather than a weak underlying association. This, in turn, can hamper the assessment

of brain-behaviour relationships and strongly undermine efforts directed at biomarker

discovery.

Due to effect size attenuation, low reliability also increases the sample sizes necessary to

identify effects (Nunnally, 1970; Zuo, Xu, & Milham, 2019). Similarly, targets with higher

measurement noise require larger training sets to achieve comparable classification accuracy
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to less noisy targets (Rolnick, Veit, Belongie, & Shavit, 2018; Wang & Tan, 2018). As a

consequence, the estimated strength of brain associations with many behavioural

phenotypes will be attenuated and require very large samples to become stable (Marek et al.,

2022). These considerations make large datasets for biomarker discovery a necessity rather

than an advantage, which in turn poses undesirable logistical, financial and ethical

challenges.

The recent availability of large neuroimaging datasets (Van Essen et al., 2013; Sudlow et al.,

2015; Volkow et al., 2018), along with advances in machine learning, has led to

population-level investigations of brain-behaviour relationships beyond simple correlations.

Using a simulation approach and empirical data from four large-scale datasets, we explore

how the test-retest reliability of behavioural phenotypes affects their out-of-sample prediction

accuracy from functional connectivity and illustrate the tradeoff between reliability and

sample size.

Results

Low phenotypic reliability reduces the accuracy of

brain-behaviour predictions

To systematically test the impact of target reliability on out-of-sample prediction accuracy, we

simulated behavioural assessments with reduced test-retest reliability using empirical data

from the Human Connectome Project Aging dataset (HCP-A). Reliability was manipulated by

incrementally increasing the proportion of random noise within the target variable.

As a proof of principle, we first present results for participant age prediction (n = 647). As

expected, systematically reducing the reliability of age resulted in a sharp decrease in

accuracy as measurement noise increased (Fig. 1A). Crucially, every 0.2 drop in reliability

reduced R2 on average by 25%. Mean absolute error (MAE) and correlation of predicted and

observed scores followed a similar pattern (Supplementary Results Figure 1). The observed

rate of change in accuracy replicated in the UK Biobank dataset (UKB; Supplementary

Results Figure 2) and was robust to variations in parcellation (Supplementary Results Figure

3) and algorithm choice (Supplementary Results Figure 4). Reducing the reliability of

resting-state functional connectivity by shortening scan duration reduced the overall
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prediction accuracy, but did not impact the pattern of change in R2 (Supplementary Results

Figure 5 and 6).

Figure 1. Impact of reliability on prediction accuracy in the HCP-A dataset. (A) Impact of
directly reducing the reliability of Age on prediction accuracy (amount of target score variance

explained by predicted scores as indicated by R2). (B) Impact of reducing the correlation

between original and simulated target scores (reflecting reduced reliability) on accuracy in

prediction of total cognition composite score, crystallised cognition composite score and grip

strength. Solid lines represent the mean across all 100 simulated datasets in each correlation

band, shaded areas represent 2 standard deviations in prediction accuracies. (C) Effect of

random noise on variability in prediction accuracy. The colour legend is common for panels B

and C.

Next, we investigated the attenuation of prediction accuracy that can be expected in typical

studies of brain-behaviour associations, by systematically adding noise to the most reliable
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measures (ICC ≈ 0.9) available in the HCP-A dataset (n = 550, Supplementary Table 4). This

way we simulated new phenotypes with reliabilities that are common in neuropsychological

assessments and have plausible true effect sizes. Total cognition could be predicted with an

accuracy of R2 = 0.23 (MAE = 10.37), crystallised cognition with R2 = 0.22 (MAE = 10.24) and

grip strength with R2 = 0.19 (MAE = 9.79). Similarly to age, reducing their reliability resulted

in a decrease in prediction accuracy (Fig. 1B). For all three assessments, R2 halved when

simulated data reached reliability of 0.6 (R2
total cog.= 0.12; R2

crystalized cog.= 0.1; R2
grip strength= 0.1).

Importantly, analysis choices such as confound regression, feature space or feature reliability

resulted in small variations in prediction accuracy on empirical and simulated data but had no

impact on the rate at which performance decreased (Supplementary Results Figure 7-9). For

MAE and correlation between predicted and observed scores see Supplementary Results

Figure 10.

We note that prediction accuracy could vary by 0.1 - 0.2 of R2 between the best and

worst-performing simulated datasets for the same level of noise depending on sampling

variability. When reliability reached 0.7 - 0.5, such variability could lead to large fluctuations in

accuracy depending on the variable (R2 = 0 - 0.12), which in turn could warrant different

conclusions regarding the success of predictions (Fig. 1C). All results were corrected by the

reliability of phenotypes estimated in previous work (ICCtotal cog.= 0.9 Heaton et al. (2014);

ICCcrystalized cog.= 0.86 Heaton et al. (2014); ICCgrip strength= 0.93 Reuben et al. (2013)). As these

can vary between studies, we also provide uncorrected results assuming perfect reliability of

phenotypes to display more general trends in Supplementary Results Figure 11.

Target reliability is related to prediction accuracy

Next, we directly investigated the relationship between reliability and brain-behaviour

prediction accuracy in empirical data where reliability could be estimated. Using test-retest

data from the Human Connectome Project dataset Young Adult (n = 46; HCP-YA) and

follow-up data from the UKB dataset (n = 1890), we estimated the reliability of 36 behavioural

assessments in HCP-YA (ICCs = 0.25 - 0.89; median ICC = 0.63; Supplementary Results

Figure 12) and 17 assessments in UKB (ICCs = 0.22 - 0.81; median ICC = 0.54;

Supplementary Results Figure 13). The resulting reliability was then correlated with their

prediction accuracy in the full sample (HCP-YA = 771; UKB = 5000) (Fig. 2).
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Figure 2. Association between reliability and prediction accuracy. (A) HCP-YA and (B)

UKB dataset. Each data point represents a behavioural assessment in each dataset.

Based on our simulation results we expected increasing attenuation of prediction accuracy as

assessment reliability decreased. Confirming this, R2 displayed a substantial correlation with

test-retest reliability in the HCP-YA dataset (r = 0.62, p < 0.001) and the UKB dataset (r =

0.65, p = 0.005) even though retest intervals were longer (mean retest = 2 years and 6

months compared to 5 months in HCP-YA) and also generalised to the ABCD dataset (r =

0.86; p < 0.001; Supplementary Results Figure 14). Given the small number of retest

subjects (n = 46) in HCP-YA, we also correlated R2 with the lower and upper bounds of the

ICC and observed the same relationship (r = 0.61, p < 0.001 and r = 0.54, p < 0.001,

respectively). As models with negative R2 values may not be comparable in accuracy, we

also correlated only models with positive R2 with reliability in HCP-YA and found an even

stronger correlation (r = 0.71, p = 0.03). Similar to our main analysis, all variables with

reliability lower than < 0.6 displayed very low accuracy (R2 < 0.02). Conversely, only

variables with excellent reliability (the picture vocabulary task, total cognition, grip strength,

reading English and crystallised cognition) could achieve R2 > 0.05.
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Influence of phenotype reliability on prediction accuracy scales

with sample size

Finally, we sought to investigate how the interaction between reliability and sample size

impacts brain behaviour prediction. Using 5000 subjects from the UKB dataset we repeated

the same simulation approach in geometrically spaced training set sizes ranging from 250 to

4450 subjects. Systematically increasing random noise in age and grip strength resulted in

reduced accuracy for all training set sizes and followed the same pattern of R2 halving for

every 0.4 drop in reliability observed in our previous analysis (Fig. 3). Importantly, a change

of 0.2 in reliability had a larger impact on prediction performance than a change in training

set size. For age prediction, even samples of 652 subjects with excellent reliability (r = 0.81;

R2
mean = 0.15, R2

sd = 0.005) produced comparable accuracy to the full sample (n = 4450) with

a moderate level of phenotypic reliability that is common across behavioural assessments (r

= 0.49; R2
mean = 0.14, R2

sd = 0.01). For phenotypes displaying weaker association with

functional connectivity, this effect was less pronounced, requiring reliable training sets with

half the size of the full sample with less reliable data to achieve comparable accuracy

(Supplementary Results Figure 15).

Figure 3. Prediction and subsampling in UKB. Impact of training set size on original and
simulated data with reduced reliability. Results were fitted with a linear function for illustration

purposes.
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Increasing sample size always resulted in higher prediction accuracy irrespective of reliability

(Fig. 4). However, the largest improvements in accuracy were observed for highly reliable

data, while data with moderate reliability showed only minor gains (Fig. 4A). This was

particularly pronounced for samples below 1000 participants. Next, we investigated how

prediction accuracy of empirical data with varying levels of reliability increases as a function

of training set size (Fig. 4B). Replicating results from simulated data with reduced reliability,

phenotypes with excellent reliability (ICCgrip strength= 0.81; ICCage ≈ 1.0) displayed a steeper and

larger improvement in accuracy as sample size increased. Phenotypes with good reliability

(ICCAssociative learning= 0.62; ICCCognitive flexibility= 0.67; ICCFluid intelligence= 0.64) showed only minor

changes in accuracy with proportionally smaller improvements (Supplementary Results Table

1). These remained unchanged when the maximum training set size was increased by an

additional 2500 subjects (Supplementary Results Figure 16).
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Figure 4. Improvement in prediction accuracy scales with sample size. (A) Impact of
training set size on age prediction accuracy in empirical and simulated data with varying

levels of reliability. Solid lines represent the mean across all 100 simulated datasets in each

correlation band and shaded areas represent 2 standard deviations in prediction accuracies.

(B) Impact of training set size on prediction accuracy of empirical behaviours. Solid lines

represent the mean accuracy across 100 subsamples and shaded areas represent 2

standard deviations in prediction accuracy. Abbreviations: SDST, Symbol Digit

SubstitutionTest; TMT-B, Trail-making task part B.

Discussion

Here we demonstrate the burden of low phenotypic test-retest reliability on brain-based

out-of-sample prediction performance. Our results suggest that especially when associations

between brain features and behavioural assessments are weak to moderate, levels of

reliability that are common for behavioural phenotypes can substantially attenuate large

portions of shared variance. Importantly, this attenuation holds irrespective of feature

definition, prediction algorithm or dataset, suggesting that analytical choices have little

impact. Furthermore, we show that while a larger sample size increases the accuracy of

brain-behaviour predictions, highly reliable data in smaller samples can produce comparable

results to large amounts of moderately reliable data, and depending on the size of the true

relationship can even outperform it. Following on from these findings, we show that only

highly reliable data can fully benefit from increasing sample sizes from hundreds to

thousands of participants.

Phenotypic reliability is important for robust results

The attenuation of a correlation between two variables by their reliability was already

described by Charles Spearman in 1910. Here we aimed to demonstrate that machine

learning approaches used to identify brain-behaviour associations also suffer from low

phenotypic reliability and show its impact on out-of-sample prediction accuracy. Generally, we

found that reliability attenuated out-of-sample prediction accuracy in a similar manner to what

has been described for correlation (Nunnally, 1970; Vul et al., 2009; Zuo et al., 2019) and

classification (Frenay & Verleysen, 2014; McNamara, Zisser, Beevers, & Shumake, 2022).
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Building on arguments emphasising the importance of reliability in biomarker research (e.g.

Milham et al., 2021), we illustrate the amount of attenuation that can be expected by the

reliability of routinely collected neuropsychological assessments available in many large

datasets. Our results suggest that moderate reliability (ICC = 0.6 - 0.4) can produce serious

attenuations of prediction accuracy irrespective of the dataset, rs-fMRI reliability and

analytical choices. Moreover, even good levels of reliability (ICC = 0.6 - 0.8) were found to

substantially attenuate brain-behaviour associations. In particular, reducing reliability to ICC =

0.6 diminished prediction accuracy on average by half. Strong relationships (e.g. age) were

equally susceptible to strong attenuation but unlike weaker ones could still be predicted with

poor reliability. However, current estimates indicate that such large effect sizes for

brain-phenotype associations are the exception rather than the rule (Button et al., 2013;

Marek et al., 2022). Overall, these results indicate that high test-retest reliability of

behavioural phenotypes is crucial to fairly evaluate the potential of neuroimaging for the

prediction of individual differences in behaviour.

Supporting previous literature (Hedge et al., 2018; Scott, Sorrell, & Benitez, 2019; Enkavi et

al., 2019; Taylor et al., 2020; Fawns-Ritchie & Deary, 2020; Anokhin et al., 2022), most

behavioural assessments in the datasets used here (HCP-YA, UKB and ABCD) showed

reliabilities within the good to moderate range (median ICC = 0.51; Supplementary Results

Figure 17) that were susceptible to high attenuations, despite desirable levels for clinical

applications (Barch & Carter, 2008; Streiner et al., 2015). As many large neuroimaging

datasets utilise similar measurement instruments (e.g. NIH Toolbox; Weintraub et al., 2013),

low prediction accuracies observed in many recent reports may be partly driven by

suboptimal reliability of prediction targets (Dubois, Galdi, Han, Paul, & Adolphs, 2018; Li et

al., 2019; Pervaiz et al., 2020; Mansour, Tian, Yeo, Cropley, & Zalesky, 2021; Wu et al., 2021;

McCormick, Arnemann, Ito, Hanson, & Cole, 2022; Heckner et al., 2023). This in turn limits

further insights into interindividual differences in brain function and the search for

neuroimaging-based biomarkers. Importantly, our results also suggest that the field can

benefit significantly from improving measurement practices and optimising behavioural

reliability to increase SNR for predictive modelling and increasing association effect sizes.

The final attenuation of brain-behaviour relationships will be determined by the joint reliability

of both neuroimaging features and behavioural targets (Nunnally, 1970; Nikolaidis et al.,

2022). Reliability of functional connectivity depends on the network (Tozzi, Fleming, Taylor,

Raterink, & Williams, 2020), preprocessing steps (Noble et al., 2019) and scan duration, with

longer acquisition leading to greater reliability (Noble et al., 2017, 2019; Cho, Korchmaros,

Vogelstein, Milham, & Xu, 2021). The marked difference in age prediction accuracy between

HCP and UKB datasets we observed here, is therefore, likely related to differences in rsfMRI
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acquisition (6 minutes in UKB compared to 26 minutes in HCP-A), in addition to lower

precision in reported age in the UKB (measured in years compared to months in HCP). In

other words, low phenotypic reliability that produced serious attenuation in the HCP-A

dataset is likely to display even greater attenuation in datasets with less reliable fMRI

measurements. Therefore, the results shown here may represent an optimistic scenario for

the field, as 26 minutes of resting-state images collected over two days is, especially in

clinical settings, uncommon. However, we also emphasise that the impact of low phenotypic

reliability generalised across datasets as well as when feature reliability was directly

manipulated. Therefore, even with exceptionally reliable fMRI measurements, unreliable

phenotypes are still likely to substantially attenuate out-of-sample prediction accuracy, as

consistent ranking across individuals will be impaired.

In addition to overall low prediction performance for data with less than good reliabilities, we

observed a large variance in prediction accuracy in simulated data. Specifically, datasets with

moderate and poor reliability showed accuracies that could result in opposite conclusions.

For example, at ICC = 0.45, the highest accuracies (R2 ≈ 0.1) were comparable to those

reported for many behavioural assessments (Sasse et al., 2022), while the worst observed

accuracy represented a failure of prediction (i.e., R2 < 0). As in our simulations, measurement

noise was randomly distributed; these results suggest that even phenotypes with moderate

reliability may contain enough noise to produce results that will not replicate. Conversely, the

higher the reliability, the lower the risk of the variance in results caused by random noise to

reach R2 = 0. Our findings, therefore, reinforce the necessity for authors to replicate their

prediction results across datasets or validate their models in truly independent samples

(Poldrack, Huckins, & Varoquaux, 2020).

Large samples are necessary but not sufficient

In a recent study, Marek and colleagues (2022) have suggested that investigating

brain-phenotype associations requires sample sizes of n > 2000, as sampling variability in

small effects can result in imprecise effect size estimates. While cognitive ability and total

psychopathology used by the authors as exemplary phenotypes have been reported to have

excellent reliability (ICC > 0.9; however, see Tiego et al. (2022) for a discussion), the

remaining phenotypes that were assessed have more modest reliabilities (ICC = 0.31 - 0.82)

(Han & Adolphs, 2020; Taylor et al., 2020; Fawns-Ritchie & Deary, 2020; Fox, Manly, Slotkin,

Devin Peipert, & Gershon, 2021; Anokhin et al., 2022). Given this large variation in reliability,

the reported sample size requirement is likely not a one-size-fits-all recommendation
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(Rosenberg & Finn, 2022), as increasing the reliability of many collected behavioural

measurements will result in larger effect sizes, effectively reducing the sample size

requirement. Here we demonstrate that depending on the true association strength, highly

reliable phenotypes can reach comparable prediction accuracy using samples in the

hundreds rather than thousands, as they are less subject to marked attenuation by low

reliability. These results suggest that collecting more reliable data may be particularly

important for research questions where, assuming cross-sectional design is appropriate,

many thousands of participants are difficult to acquire (e.g., specific conditions) and discuss

ways to implement this below. However, more importantly, we demonstrate that only reliable

phenotypes can fully benefit from improvements in prediction accuracy as training set sizes

increase from hundreds to thousands of participants that has been observed previously

(Nieuwenhuis et al., 2012; Jollans et al., 2019; Traut et al., 2022). Conversely, measurements

with poor reliability are likely suboptimal candidates for big data initiatives as collecting

thousands of participants will only yield minor increases in accuracy before saturating.

Therefore, improving measurement reliability of appropriately selected phenotypes for

associations with neuroimaging features will likely boost predictive (and statistical) power in

large datasets. Finally, we note that our findings should not be taken to justify the use of

small n studies under the guise of high measurement quality. As long as true associations

between behavioural phenotypes and neuroimaging display small effect sizes, very large

samples will be necessary. Thus, it is important that on top of considering measurement

reliability, researchers continue to follow guidelines for generalisable (Paus, 2010) and

reproducible predictive modelling (Varoquaux, 2018; Janssen, Mourão-Miranda, & Schnack,

2018; Scheinost et al., 2019; Poldrack et al., 2020).

Across a broad range of tested variables, empirical reliability (estimated from the datasets)

was rarely excellent (5 out of 36 tested in HCP-YA, 0 out of 17 in UKB), replicating

observations from other large datasets (Anokhin et al., 2022). Furthermore, empirical

reliability was generally lower than that reported at test development (Akshoomoff et al.,

2013; Reuben et al., 2013; Weintraub et al., 2013; Heaton et al., 2014). Similar differences in

reliability between datasets are not uncommon and may be due to differences in retest

intervals (Scott et al., 2019; Taylor et al., 2020; Han & Adolphs, 2020; Anokhin et al., 2022).

However, assessments of behaviour in large datasets in particular may be subject to other

sources of measurement noise resulting from specifics of big data collection such as site

differences, coordinator training, relatively low number of trials designed to lower the burden

on participants or shortened versions of validated assessments, and participant fatigue from

lengthy acquisition protocols. At the same time, best practices in assessing test-retest

reliability during test development are not always adhered to, likely producing further

14

https://www.zotero.org/google-docs/?VDwQ2Q
https://www.zotero.org/google-docs/?QBMVEG
https://www.zotero.org/google-docs/?gpQxhB
https://www.zotero.org/google-docs/?UYOQbC
https://www.zotero.org/google-docs/?UYOQbC
https://www.zotero.org/google-docs/?iltUlr
https://www.zotero.org/google-docs/?2WzP63
https://www.zotero.org/google-docs/?2WzP63
https://www.zotero.org/google-docs/?lyXDiK


discrepancies between studies (Polit, 2014). We note that the actual test-retest reliability of

many measures in large datasets is currently hard to assess as outside of HCP-YA none of

the most commonly used datasets like HCP-A, UKB and ABCD have test-retest samples.

The inability to assess phenotype reliability in these datasets precludes the possibility to

disentangle whether poor model performance is due to measurement error or reflects low

effect size. If phenotype reliability is indeed substantially lower in large datasets than that

reported at test development, many available datasets may be of limited use for

individual-differences research and further increasing sample size (e.g. to biobank levels) will

be of little benefit. We therefore urge that moving forward, any attempts at identifying

biomarkers must involve careful consideration and thorough assessment of the reliability of

behavioural as well as neuroimaging measurements e.g. in re-test samples before data is

collected at larger scales and evaluated for predictive power.

Improving phenotypic reliability

A wealth of literature discusses ways of improving measurement reliability. Prior to

acquisition, this can be achieved by opting for a deeper phenotyping design (Gratton, Nelson,

& Gordon, 2022) either in the laboratory or by means of ecological momentary assessment

(Moskowitz & Young, 2006), introducing more rigorous testing strategies such as collecting

more trials (for an overview see Zorowitz & Niv, 2022), taking measures to increase

between-subject variance (Xu et al., 2023) or acquiring multiple assessments for data

aggregation (Nikolaidis et al., 2022). In already acquired data, researchers should select

relevant measurements with the best psychometric properties. For behavioural phenotypes,

data reduction techniques such as principal component analysis or summary scores,

assuming that error variance and loading of all items on a latent dimension are equal

(McNeish & Wolf, 2020), can increase reliability and lead to larger effect sizes than individual

items (Lohmann et al., 2021; Tian & Zalesky, 2021; Marek et al., 2022; Ooi et al., 2022;

Sasse et al., 2022). Supporting this, composite scores of the NIH toolbox tasks in the HCP

datasets were more reliable than individual assessments and reached higher prediction

accuracy. Similarly, averaging left and right hand grip strength in the UKB dataset compared

to each hand separately lead to improvement in both reliability and accuracy. Comparable

increases were also achieved when grip strength was averaged across testing occasions

(Supplementary Results Figure 18). If equal item loading on a latent dimension cannot be

assumed, reliability can be increased using latent modelling frameworks that account for

systematic and unsystematic errors. However, more work is necessary to identify the most
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cost-effective strategies for optimising the reliability of both measurements without sacrificing

measurement validity to increase prediction accuracy. To this end, future research should

focus on ways to improve the reliability of already acquired data and evaluate best practices

to preserve reliability when acquiring new data at large scales.

Although high reliability of either measurement is necessary for meaningful investigations of

prediction accuracy, it is not sufficient. For instance, highly reliable phenotypes that don't

capture a valid representation within the brain are not likely to improve effect sizes.

Moreover, many behavioural measurements are validated against other established

psychological scales or with specific populations in mind, rather than developed in light of

their biological relevance. As a result, they may not be well-suited for investigations of brain

behaviour associations, and thus, enhancing their reliability may bring little improvement in

effect size. Similarly, structural MRI metrics that display better reliability than functional

connectivity (Reuter, Schmansky, Rosas, & Fischl, 2012; Masouleh et al., 2020), are often

poorer predictors of many psychological constructs (Ooi et al., 2022) that may instead rely on

intrinsic fluctuations in neural activity (Waschke, Kloosterman, Obleser, & Garrett, 2021).

Therefore, while optimising measurement reliability offers one possible avenue for improving

the investigation of individual differences; it will not guarantee larger effect sizes (Finn &

Rosenberg, 2021) or better prediction accuracy, especially if the selection of appropriate

phenotypes is neglected.

Conclusion

The recent availability of large-scale neuroimaging datasets, combined with advances in

machine learning, has enabled the investigation of population-level brain-behaviour

associations. In this study, we demonstrate that common levels of reliability across many

behavioural phenotypes in such datasets can strongly attenuate or even conceal actual

associations. This, in turn, can lead to scientifically questionable conclusions about the

predictive potential of neuroimaging and hinders clinical translation. Therefore, greater

emphasis needs to be placed on refining behavioural phenotyping in large datasets on top of

similar efforts directed at neuroimaging. Together, more reliable neurobiological

measurements and “markers” of behaviour will be necessary to fully exploit the benefits of

big data initiatives in neuroscience, promote the identification of potential biomarkers, and

contribute to reproducible science.
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Methods

To investigate the impact of phenotypic reliability on brain-behaviour associations, we used

functional connectivity to predict empirical and simulated data with varying levels of reliability.

Reliability was manipulated by increasing the proportion of random noise (representing error

variance) in our prediction targets. Noise simulations were done using data of the Human

Connectome Project Aging dataset (HCP-A) due to its favourable ratio between imaging data

quality and variance in phenotypic data with high reliability. As increasing noise for the

purposes of our analyses may only be meaningful in highly reliable phenotypes, we selected

prediction targets based on their published estimates of reliability: age (ICC ≈ 1.0), grip

strength (ICC = 0.93; Reuben et al. (2013)), total cognition composite (ICC = 0.86 - 0.95;

Akshoomoff et al. (2013); Heaton et al. (2014)) and crystallised cognition composite (ICC =

0.9; Akshoomoff et al. (2013); Heaton et al. (2014)). Next, three datasets - The Human

Connectome Project dataset Young Adult (HCP-YA), UK Biobank (UKB) and Adolescent

Brain Cognitive Development (ABCD) were used to investigate the association between

reliability and prediction accuracy as test-retest or follow-up behavioural data was available in

all datasets (and not in HCP-A). The ABCD was used to investigate if the association

between reliability and prediction accuracy generalised to a dataset with a different

population and preprocessing steps. Lastly, the UKB sample was used to investigate the

interaction between reliability and sample size given the large number of subjects available.

To create simulated data, the noise was only manipulated on the most reliable phenotypes

available in the dataset: age (ICC ≈ 1.0) and grip strength (ICC = 0.93 - 0.96; Bohanon et al.

(2011); Hamilton et al. (1994)). Unfortunately, none of the cognitive assessments exhibited

reliability values that were high enough for our purpose, with the highest reliability at r = 0.78

for the trail-making B task (Fawns-Ritchie & Deary, 2020). For an overview of datasets see

Table 1.
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Table 1

Overview of datasets and samples used in main analyses

Dataset Analysis Sample (Female) Age Range

HCP-A Prediction of simulated data 647 (351) 36-89

HCP-YA Prediction of all phenotypes 771 (358) 22-35

Test-retest 46 (32) 22-35

UKB Prediction of simulated data and
all phenotypes

5000 (2714) 48-82

Test-retest 1890 (1012) 48-79

ABCD Prediction of simulated data and
all phenotypes

4133 (2123) 9-10

Test-retest 2102 (1026) 9-10

HCP-A, Human Connectome Project Aging; HCP-YA, Human Connectome Project dataset Young Adult; UKB, UK Biobank.

Datasets

Human Connectome Project Aging dataset

For our primary simulation analysis, we used data from the Human Connectome Project

Aging dataset (Bookheimer et al., 2019; Harms et al., 2018), obtained from unrelated healthy

adults. Only subjects with all four complete runs of resting-state fMRI (rs-fMRI) scans and no

excessive head movement (framewise displacement < 0.25 mm, which corresponded to 3SD

above the mean) were analysed, resulting in a sample of 647 subjects for age prediction (351

female, ages = 36-89) of approximately 550 had all phenotypic data of interest available (see

supplementary methods for exact n for each phenotype).

The HCP scanning protocol involved high-resolution T1w MRI images that were acquired on

a 3T Siemens Prisma with a 32-channel head coil using a 3D multi-echo MPRAGE sequence

(TR = 2500 ms, 0.8 mm isotropic voxels). The rs-fMRI images were acquired using a 2D
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multiband gradient-echo echo-planar imaging (TR = 800 ms, 2 mm isotropic voxels). Four

rs-fMRI sessions with 488 volumes each (6 min and 41 s) were acquired on two consecutive

days, with one anterior-to-posterior and one posterior-to-anterior encoding direction acquired

on each day.

Human Connectome Young Adult dataset

To investigate the relationship between reliability and prediction accuracy we used data from

the Human Connectome Project Young Adult dataset (Van Essen et al., 2013), partly

consisting of related healthy subjects. Only subjects with all four complete runs of rs-fMRI, no

excessive head movement (framewise displacement < 0.3 mm, which corresponded to a

displacement of 3SD above the mean) and all phenotypes of interest were included (n = 713,

358 female, ages = 22-35). In total, 36 behavioural phenotypes that were available for all

subjects and did not display strong ceiling effects were selected for prediction (see

supplementary methods for a full list of phenotypes and their distributions). Standardised

scores were used when available. Additionally, a test-retest dataset for subjects with all 36

assessments (n = 46, 32 female, ages = 22-35) was used to estimate phenotypic reliability.

The HCP scanning protocol involved high-resolution T1w MRI images that were acquired on

a 32-channel head coil on a 3T Siemens “Connectome Skyra” scanner using a 3D

single-echo MPRAGE sequence (TR = 2400 ms, 0.7 mm isotropic voxels). The resting state

fMRI images were acquired using whole-brain multiband gradient-echo echo-planar imaging

(TR = 720 ms, 2 mm isotropic voxels). Four rs-fMRI sessions with 1,200 volumes each (14

min and 24 s) were acquired on two consecutive days, with one left-to-right and one

right-to-left phase encoding direction acquired on each day.

UK Biobank

To investigate the association between prediction accuracy and reliability as well as how

reliability interacts with sample size, we randomly sampled n = 5000 (2714 female, ages =

48-82) participants from healthy subjects of the UK Biobank sample (Sudlow et al., 2015).

Healthy participants were defined as subjects without lifetime prevalence of cerebrovascular

diseases, infectious diseases affecting the nervous system, neuropsychiatric disorders or

neurological diseases based on ICD-10 diagnosis from hospital inpatient records and

self-report (see supplementary methods for all excluded data fields). All subjects had
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complete rs-fMRI scans and displayed no excessive head movement (framewise

displacement < 0.28 mm, which corresponded to a displacement of 3SD above the mean).

Within this sample, we selected 17 phenotypes that were available for all subjects and did

not display strong ceiling effects (see supplementary methods for a full list of phenotypes and

their distributions). Of those, age and grip strength were used for creating simulated data.

Additionally, a sample of 1890 (1012 female, ages = 48-79) subjects with available follow-up

data for all 17 phenotypes from the follow-up imaging session was used to estimate

phenotypic reliability. The mean interval between the initial imaging session and the follow-up

session was 2 years and 6 months.

The UKB scanning protocol (Miller et al., 2016) included structural and resting state fMRI

images acquired at four imaging centres (Bristol, Cheadle Manchester, Newcastle and

Reading) with harmonized Siemens 3T Skyra MRI scanners with a 32-channel head coil.

T1w MRI images were acquired using a 3D MPRAGE sequence (TR = 2000 ms, 1.0 mm

isotropic). One rs-fMRI session with 490 volumes each (6 min and 10 s) was acquired using

a multiband echo-planar imaging (TR = 735 ms, 2.4 mm isotropic voxels).

Adolescent Brain Cognitive Development

To investigate if our association between phenotype reliability and prediction accuracy

generalises to an additional dataset with different preprocessing we used data from the

Adolescent Brain Cognitive Development study (Volkow et al., 2018) baseline sample from

the ABCD BIDS Community Collection (Feczko et al., 2021). Only English speaking

participants without severe sensory, intellectual, medical or neurological issues and all

available behavioural phenotypes were used (see supplementary methods for a full list).

Furthermore, all participants had to have complete rs-fMRI data and pass the ABCD quality

control for their T1 and resting-state fMRI. This resulted in a total of 4133 participants (2123

female, ages = 9-11). Additionally, a sample of 2102 (1026 female, ages = 9-11) subjects with

available follow-up data for all phenotypes from the first follow-up session was used to

estimate phenotypic reliability. The mean interval between the initial imaging session and the

follow-up session was 1 year and 11 months.

The ABCD acquisition protocol (Casey et al., 2018) was harmonised across 21 sites on

Siemens Prisma, Phillips, and GE 750 3T scanners. It included high-resolution T1w MRI

images with a 32-channel head coil using a 3D multi-echo MPRAGE sequence (TR = 2500

ms, 1.0 mm isotropic voxels). The rs-fMRI images were acquired using gradient-echo
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echo-planar imaging (TR = 800 ms, 2.4 mm isotropic voxels) and included two sessions

totalling 20 minutes.

Simulation of different levels of reliability of selected phenotypes

For each of the selected prediction targets we created simulated datasets with varying

amounts of noise. According to classical measurement theory (Novick, 1966), any

measurement reflects a mixture of the measured entity and random (as well as systematic)

measurement noise. The reliability of a variable can thus be reduced by increasing the

proportion of error or noise variance while holding between-subject variance constant,

thereby reducing the signal-to-noise ratio. Here we manipulated only the unsystematic

measurement noise, defined as random variability that produces a discrepancy between

observed and true values (or repeated observations). Increasing random noise is ideal for

investigating test-retest reliability as it only affects the variability of measurements around the

mean and thus manipulates the ranking across individuals.

In order to induce increasing levels of noise in the target variable, we created datasets that

correlated with the originally observed (empirical) targets at a pre-specified Pearson’s

correlation. This method was chosen to increase the interpretability of the resulting

attenuation of brain-behaviour associations by controlling the amount of noise. The data

generation procedure was as follows: First, a random vector was sampled from a standard

normal distribution with the same mean and standard deviation as the original empirically

acquired data (in the HCP these were age-adjusted and normalised to mean = 100 and SD =

15). Next, we calculated the residuals of a least squares regression of the sampled vector (X)

on the empirical data (Y). The resulting orthogonal vector representing the portion of X that is

independent of Y was then again combined with the original empirical data Y through scaling

by the pre-specified correlation. This adjustment process manipulated the relative

contributions of Y and the residuals of X on Y in the resulting simulated vector. The formula

used for this process was:

𝑋
𝑌𝜌

 =  𝜌 σ(𝑌 ⊥)𝑌 +  1 − 𝜌2 σ(𝑌)𝑌 ⊥  

Where XY𝜌 is the new ‘simulated’ vector that correlates with the empirical data Y at a

predefined correlation . represents the residuals of a least squares regression of a 𝜌 𝑌 ⊥

randomly sampled vector X against Y. We provide an R implementation in the accompanying

repository online (https://github.com/MartinGell/Reliability/code).
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The pre-specified correlations for simulated data based on the HCP-A dataset were set to

correlate with the original data at r = 0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55 and

0.5. Given the high computational load for large samples, simulated UKB data were set to

correlate at r = 0.9, 0.8, 0.7, 0.6 and 0.5 with the original data. For each level of correlation,

simulation was repeated 100 times, thus totalling 4400 simulated datasets for HCP-A (4

assessed phenotypes x 11 noise levels x 100 repeats) and 1500 simulated datasets for UKB

(3 assessed phenotypes x 5 noise levels x 100 repeats). Simulated datasets were scaled and

offset to have approximately the same mean and standard deviation as the original

measurements to facilitate absolute agreement (i.e. stability across repeated measurements)

between original data and the simulated test-retest data in order to harmonise test-retest

correlations and ICC (for distribution of mean and SD for each dataset see the accompanying

online repository: https://github.com/MartinGell/Reliability/plots). As age did not follow a

normal distribution, we first estimated its probability density from the original data and then

sampled simulated data from this distribution instead.

Phenotype preprocessing

As we used linear ridge regression for prediction, all phenotypes that displayed a

right-skewed distribution were transformed with a natural log transform. As this procedure

manipulated data within participants, there was no data leakage across participants.

fMRI Preprocessing

Both HCP datasets provided minimally preprocessed data. The preprocessing pipeline has

been described in detail elsewhere (Glasser et al., 2013). Briefly, this included gradient

distortion correction, image distortion correction, registration to subjects’ T1w image and to

MNI standard space followed by intensity normalisation of the acquired rs-fMRI images, and

Independent Component Analysis (ICA) followed by an ICA-based X-noiseifier (ICA-FIX)

denoising (Beckmann & Smith, 2004; Salimi-Khorshidi et al., 2014) Additional denoising

steps were conducted by regressing mean time courses of white matter and cerebrospinal

fluid and the global signal, which has been shown to reduce motion-related artefacts (Ciric et

al., 2017). Next, data were linearly detrended and bandpass filtered at 0.01 – 0.1 Hz.
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The UKB data were preprocessed through a pipeline developed and run on behalf of UK

Biobank (Alfaro-Almagro et al., 2018) and included the following steps: motion correction

using MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002); grand-mean intensity

normalisation of the entire 4D fMRI dataset by a single multiplicative factor; highpass

temporal filtering using Gaussian-weighted least-squares straight line fitting with sigma = 50

sec; Echo Planar Imaging unwarping; Gradient Distortion Correction unwarping; structured

artefact removal through ICA-FIX (Beckmann & Smith, 2004; Salimi-Khorshidi et al., 2014).

No low-pass temporal or spatial smoothing was applied. The preprocessed datasets (named

as filtered_func_data_clean.nii in the UK Biobank database) were normalised to MNI space

using FSL's applywarp command.

The ABCD dataset was preprocessed ABCD-BIDS pipeline as part of the ABCD-BIDS

Community Collection (ABCC; Collection 3165) which has been described in detail

elsewhere (Feczko et al., 2021). The pipeline included distortion correction and alignment

using Advanced Normalization Tools (ANTS), FreeSurfer segmentation, and surface as well

as volume registration using FSL FLIRT rigid-body transformation. Processing was done

according to the DCAN BOLD Processing (DBP) pipeline which included de-trending and

de-meaning of the rs-fMRI data, denoising using a general linear model with regressors for

tissue classes and movement. The data were then bandpass filtered between 0.008 and 0.09

Hz using a 2nd order Butterworth filter. DPB respiratory motion filtering (18.582 to 25.726

breaths per minute), and censoring (frames exceeding an FD threshold of 0.2mm or failing to

pass outlier detection at +/- 3 standard deviations were discarded) were then applied.

Functional connectivity

The denoised time courses from all datasets were parcellated using the Schaefer et al.

(2018) atlas with 400 cortical regions of interest for all main analyses. The signal time

courses were averaged across all voxels of each parcel. Parcel-wise time series were used

for calculating functional connectivity between all parcels using Pearson correlation. For HCP

datasets, the correlation coefficients of individual sessions (4 per participant) were

transformed into Fisher-Z scores, and for each connection, an average across sessions was

calculated. To investigate the robustness of our results to granularity and parcellation

selection, functional connectivity between denoised time courses of 200, 300 cortical regions

from the Schaefer et al. (2018) atlas as well as 300 cortical, subcortical and cerebellar

regions of interest defined by Seitzman et al. (2020) was calculated. Regions were modelled

as 6-mm spheres and calculated from resting state data from the HCP Aging dataset (results
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presented in the supplemental material). Finally, to investigate the generalisation of our

results to another dataset with different preprocessing steps, the ABCD dataset was

parcellated using HCP’s 360 ROI atlas template (Glasser et al., 2016).

Prediction

We used the scikit-learn library [version 0.24.2, (Pedregosa et al., 2011)] to predict all target

variables from functional connectivity (code including exemplary data available online:

https://github.com/MartinGell/Prediction_Reliability). Accuracy was measured using R2

(coefficient of determination), mean absolute error (MAE) and Pearson correlation between

predicted and observed target values. The R2 represents the proportion of variance (in the

target variable) that has been explained by the independent variables in the model and is

calculated here as

𝑅2(𝑦, ŷ) = 1 − 𝑖=1

𝑛

∑ (𝑦𝑖 − ŷ𝑖)2

𝑖=1

𝑛

∑ (𝑦𝑖 − ȳ𝑖)2
 

Where ŷi is the predicted value of the i-th sample and yi is the corresponding true value for

total n samples. Ȳ Represents the mean across all y. In this formulation, the R2 is not

interchangeable with the correlation coefficient squared. All predictions were performed using

linear ridge regression as it showed a favourable ratio of computation time to accuracy in

previous work (Cui & Gong, 2018) and preliminary testing (see supplementary methods).

Out-of-sample prediction accuracy was evaluated using a nested cross-validation with 10

outer folds and 5 repeats. Hyperparameter optimization (inner training folds) of the 𝛼

regularisation parameter for ridge regression was done using efficient leave-one-out

cross-validation (Rifkin & Lippert, 2007). The model with the best 𝛼 parameter was then fitted

on the training folds and tested on the outer test folds. Within each training fold,

neuroimaging features were standardised by z-scoring across participants before models

were trained in order to ensure that individual features with large variance would not

dominate the objective function. Before prediction (of both original and simulated data),

subjects with target values 3 SD from the sample mean were removed from the complete

sample to minimise the impact of extreme values resulting from random sampling in

simulated data. As a preprocessing step prior to training, neuroimaging features were

z-scored within participants.
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Control analyses for simulation results in HCP-A

To verify our analyses were robust to analytical degrees of freedom, we repeated our

analyses of the HCP-A dataset using support vector regression, an alternative node definition

for functional connectivity features (using ROIs from Seitzman et al., 2020) and feature-wise

confound removal. For algorithm comparison, we trained a support vector regression with a

linear kernel on neuroimaging features. Out-of-sample prediction accuracy was evaluated

using a non-nested cross-validation with 10 outer folds and 5 repeats. A heuristic was used

to efficiently calculate the hyperparameter C (Helleputte, Paul, & Gramme, 2021):

𝑐 =  1

1
𝑛

𝑖 =1

𝑛

∑ 𝐺[𝑖,𝑖]

where G is the matrix multiplication of features and transposition of features (here: functional

connectivity). To investigate whether confounding effects impacted our results, standard

confound variables (age and sex for the prediction of all phenotypes) were removed from the

connectivity features using linear regression. Confound removal was performed within each

training fold and the confound models were subsequently applied to test data to prevent data

leakage (More, Eickhoff, Caspers, & Patil, 2021). The impact or the reliability of functional

connectivity was investigated by reducing the length of the resting state time courses before

calculating functional connectivity. Firstly, only two sessions (rather than all four),

corresponding to the resting-state images acquired on the first day, were used. Finally to

mirror the UKB acquisition protocol only the very first session acquired in the

anterior-to-posterior direction was used for calculating functional connectivity. All control

analyses are presented in the supplemental material.

Association between reliability and prediction accuracy

The relationship between target reliability and prediction accuracy (measured as R2) was

investigated using the HCP-YA dataset. First, the test-retest data of 46 participants was used

to estimate measurement reliability for 36 different behavioural phenotypes by calculating

ICC between the scores from the first and second visits. ICC was calculated using a two-way

random effects model for absolute agreement, often referred to as ICC[2,1] (Shrout & Fleiss,

1979). Next, all selected measures were predicted in a sample of 713 subjects from the

HCP-YA dataset using linear ridge regression. As the HCP-YA dataset includes related

subjects, cross-validation was done using a 5 times repeated leave 30% of families out

approach, instead of the 10-fold random split used in other analyses. Family members were
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always kept within the same fold in order to maintain independence between the folds.

Confounding effects of age and sex on features were removed using linear regression

trained on the training set and applied to test data within the cross-validation. Finally, the

resulting prediction accuracies (R2) of the 36 different phenotypes were correlated with their

corresponding reliability (calculated from the test-retest data). To validate our findings, the

above-described approach (with the exception of cross-validation) was repeated using the

UKB dataset. Reliability was estimated for 17 different behavioural assessments using ICC2

between measurements collected during the first and follow-up imaging visits in 1893

subjects. All phenotypes were predicted in a set of 5000 subjects from the UKB using ridge

regression in nested cross-validation with 10 outer folds and 5 repeats used for our main

analyses.

Subsampling procedure and prediction in the UKB dataset

To examine how the effects of reliability on prediction performance interact with increasing

sample size, we randomly sampled geometrically spaced samples (series with a constant

ratio between successive elements) from 5000 subjects of the UK Biobank starting from n =

250 (250, 403, 652, 1054, 1704, 2753, 4450). By doing so, we aimed to cover sample sizes

ranging from those available in larger neuroimaging studies to international consortia levels.

To be able to compare prediction accuracy between different sample sizes we used a

learning curve function from Sklearn (`learning_curve`). In this approach, we first partitioned

a test set of 10% of the full sample (500 subjects). From the remaining data, geometrically

spaced samples of subjects (250, 403, 652, 1054, 1704, 2753, 4450) were sampled without

replacement. Each subsample was then used to train a ridge regression model with

hyperparameter optimization using the same cross-validation set-up with 10 outer folds and 5

repeats used in previous analyses. This approach made the comparison of accuracy

between different sample sizes possible as the test set is held constant for all samples of

training subjects. The entire procedure was repeated 100 times for all simulated and

empirical data.
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